69174.fb2 Курс общей астрономии - читать онлайн бесплатно полную версию книги . Страница 2

Курс общей астрономии - читать онлайн бесплатно полную версию книги . Страница 2

3) если d > j, то светило М2 в верхней кульминации находится к северу от зенита на зенитном расстоянии

z = d - j,(1.10)

или на высоте

h = 90° + j - d .(1.11)

4) наконец, в момент нижней кульминации зенитное расстояние светила М3

z = 180° - j - d ,(1.12)

a высота

h = d - (90° - j ) = j + d - 90°.(1.13)

Из наблюдений известно (см. § 8), что на данной широте j каждая звезда всегда восходит (или заходит) в одной и той же точке горизонта, высота ее в меридиане также всегда одинакова. Отсюда можно заключить, что склонения звезд не меняются с течением времени (по крайней мере заметно). Точки же восхода и захода Солнца, Луны и планет, а также их высота в меридиане в разные дни года - различны. Следовательно, склонения этих светил непрерывно меняются с течением времени.

§ 15. Эклиптика. Эклиптическая система координат

Измерениями зенитного расстояния или высоты Солнца в полдень (т.е. в момент его верхней кульминации) на одной и той же географической широте было установлено, что склонение Солнца в течение года изменяется в пределах от +23° 27' до -23°27', два раза в году переходя через нуль. Из наблюдений за изменением вида ночного неба следует, что и прямое восхождение Солнца на протяжении года также постепенно изменяется от 0° до 360°, или от 0h до 24h. Действительно, в полночь в верхней кульминации находятся те звезды, прямые восхождения которых отличаются от прямого восхождения Солнца на 180° или на 12h. Наблюдения же показывают, что с каждым днем в полночь кульминируют звезды все с большим и большим прямым восхождением, следовательно, и прямое восхождение Солнца с каждым днем увеличивается. Рассматривая непрерывное изменение обеих координат Солнца, нетрудно установить, что оно перемещается среди звезд с запада к востоку по большому кругу небесной сферы, который называется эклиптикой. Плоскость эклиптики E’' ^ E d (рис. 11) наклонена к плоскости небесного экватора под углом e = 23° 27'. Диаметр ПП', перпендикулярный к плоскости эклиптики, называется осью эклиптики и пересекается с поверхностью небесной сферы в северном полюсе эклиптики П (лежащем в северном полушарии) и в южном полюсе эклиптики П' (в южном полушарии).

Эклиптика пересекается с небесным экватором в двух точках: в точке весеннего равноденствия ^ и в точке осеннего равноденствия d. В точке весеннего равноденствия ^ Солнце пересекает небесный экватор, переходя из южного полушария небесной сферы в северное. В точке осеннего равноденствия d Солнце переходит из северного полушария в южное. Точки эклиптики, отстоящие от равноденственных на 90°, называются точкой летнего солнцестояния (в северном полушарии) и точкой зимнего солнцестояния (в южном полушарии). Большой полукруг небесной сферы ПМП', проходящий через полюсы эклиптики и через светило М, называется кругом широты светила. Эклиптика и точка весеннего равноденствия лежат в основе эклиптической системы небесных координат. Одной координатой в этой системе является эклиптическая широта b светила М, которой называется дуга тМ круга широты (см. рис. 11) от эклиптики до светила, или центральный угол тОМ между плоскостью эклиптики и направлением на светило М. Эклиптические широты отсчитываются в пределах от 0° до + 90° к северному полюсу эклиптики (П) и от 0° до - 90° к ее южному полюсу (П'). Светила, находящиеся на одном малом круге, плоскость которого параллельна плоскости эклиптики, имеют одинаковые эклиптические широты. Эклиптическая широта определяет положение светила на круге широты. Положение же самого круга широты на небесной сфере определяется другой координатой эклиптической долготой l. Эклиптической долготой l светила М называется дуга ^m эклиптики от точки весеннего равноденствия ^ до круга широты, проходящего через светило, или центральный угол ^От (в плоскости эклиптики) между направлением на точку весеннего равноденствия и плоскостью круга широты, проходящего через светило. Эклиптические долготы отсчитываются в сторону видимого годичного движения Солнца по эклиптике, т.е. с запада к востоку в пределах от 0° до 360°. Светила, находящиеся на одном круге широты, имеют одинаковые эклиптические долготы. Эклиптическая система координат применяется преимущественно в теоретической астрономии при определении орбит небесных тел.

§ 16. Изменение экваториальных координат Солнца

Изменение экваториальных координат Солнца при его движении по эклиптике происходит следующим образом. Когда Солнце находится в точке весеннего равноденствия ^ (см. § 15), его прямое восхождение и склонение равны нулю. Затем с каждым днем прямое восхождение и склонение Солнца увеличиваются, и когда Солнце придет в точку летнего солнцестояния, его прямое восхождение станет равным 90° или бh, а склонение достигает максимального значения + 23° 27'. После этого склонение Солнца начинает уменьшаться, а прямое восхождение по-прежнему растет. Когда Солнце придет в точку осеннего равноденствия, его прямое восхождение a = 180° или 12h, а склонение d = 0°. Далее, прямое восхождение Солнца, продолжая увеличиваться, в точке зимнего солнцестояния становится равным 270° или 18h, а склонение достигает своего минимального значения - 23° 27'. После этого склонение Солнца начинает расти, и когда Солнце придет в точку весеннего равноденствия, его склонение снова становится равным нулю, а прямое восхождение, достигнув значения 360° или 24h, обращается в нуль. Эти изменения экваториальных координат Солнца в течение года происходят неравномерно. Склонение изменяется быстрее всего при движении Солнца вблизи равноденственных точек и медленнее всего - вблизи точек солнцестояний. Прямое восхождение, наоборот, медленнее меняется вблизи равноденственных точек и быстрее - вблизи точек солнцестояний. При этом скорость изменения прямого восхождения Солнца вблизи точки летнего солнцестояния меньше, чем вблизи точки зимнего солнцестояния. Видимое движение Солнца по эклиптике есть следствие действительного движения Земли - обращения ее вокруг Солнца. Движение Земли вокруг Солнца происходит в том же направлении, что и вращение Земли вокруг оси, и неравномерно (см. § 40). При этом ось вращения Земли всегда наклонена к плоскости орбиты Земли под углом 66° 33'. Поэтому нам и кажется, что Солнце так же неравномерно перемещается по небесному своду среди звезд, так же с запада на восток, но по окружности (эклиптике), плоскость которой наклонена к плоскости небесного (и земного) экватора под углом 23° 27' = 90° - 66°33'. Когда Солнце находится в точке весеннего равноденствия (d = 0), то оно на всех географических широтах земной поверхности восходит в точке востока Е и заходит в точке запада W (см. § 13). Половина его суточного пути находится над горизонтом, половина под горизонтом. Следовательно, на всем земном шаре, кроме полюсов, в этот день продолжительность дня равна продолжительности ночи. Этот день называется днем весеннего равноденствия (около 21 марта) и считается началом весны в северном полушарии Земли. (В южном полушарии этот момент соответствует началу осени.) Полуденная высота Солнца в день весеннего равноденствия на данной северной широте j согласно формуле (1.7) h¤ = 90° - j. Когда Солнце находится в точке летнего солнцестояния (d = +23° 27'), то оно восходит на данной северной широте j на северо-востоке, а заходит на северо-западе. Большая часть его суточного пути находится над горизонтом. Продолжительность дня в северном полушарии Земли максимальная, ночи минимальная, в южном - наоборот. Этот день называется днем летнего солнцестояния (около 22 июня) и считается началом лета в северном полушарии Земли (в южном этот момент соответствует началу зимы). В день летнего солнцестояния полуденная высота Солнца на данной северной широте j достигает максимального значения hmax = 90° - j + 23° 27’ Когда Солнце находится в точке осеннего равноденствия (d = 0), то оно снова на всей Земле восходит в точке востока и заходит в точке запада, и снова на всех широтах, кроме полюсов, продолжительность дня равна продолжительности ночи. Этот день называется днем осеннего равноденствия (около 23 сентября) и считается началом осени в северном полушарии Земли (началом весны - в южном полушарии). Высота Солнца в полдень на данной широте j в день осеннего равноденствия снова равна 90° - j. Наконец, когда Солнце находится в точке зимнего солнцестояния (d = - 23° 27’), то оно восходит на юго-востоке, а заходит на юго-западе. Большая часть его суточного пути находится под горизонтом. На данной северной географической широте j продолжительность дня минимальна, ночи - максимальна (в южных широтах, наоборот, продолжительность дня максимальна, ночи - минимальна). Этот день называется днем зимнего солнцестояния (около 22 декабря) и считается началом зимы в северном полушарии Земли (началом лета - в южном полушарии). Высота Солнца в день зимнего солнцестояния на данной северной широте j достигает минимального значения hmin = 90° - j - 23° 27’ В остальные дни года высота Солнца в полдень лежит между значениями hmax и hmin.

§ 17. Суточное движение Солнца на разных широта

а) Для наблюдателя на северном полюсе Земли (j = + 90°) незаходящими светилами являются те, у которых d ³ 0, а невосходящими те, у которых d < 0 (см. § 13, рис. 10). Положительное склонение у Солнца бывает с 21 марта по 23 сентября, а отрицательное - с 23 сентября по 21 марта. Следовательно, на северном полюсе Земли Солнце приблизительно полгода бывает незаходящим, а полгода - невосходящим светилом. Около 21 марта Солнце здесь появляется над горизонтом (восходит) и вследствие суточного вращения небесной сферы описывает кривые, близкие к окружности и почти параллельные горизонту, поднимаясь с каждым днем все выше и выше. В день летнего солнцестояния (около 22 июня) Солнце .достигает максимальной высоты hmах = + 23° 27'. После этого Солнце начинает приближаться к горизонту, высота его постепенно уменьшается и после дня осеннего равноденствия (после 23 сентября) оно скрывается под горизонтом (заходит). День, длившийся полгода, кончается и начинается ночь, которая длится также полгода. Солнце, продолжая описывать кривые, почти параллельные горизонту, но под ним, опускается все ниже и ниже, В день зимнего солнцестояния (около 22 декабря) оно опустится под горизонт на высоту hmin = - 23° 27', а затем снова начнет приближаться к горизонту, высота его будет увеличиваться, и перед днем весеннего равноденствия Солнце снова появится над горизонтом. Для наблюдателя на южном полюсе Земли (j = - 90°) суточное движение Солнца происходит подобным же образом. Только здесь Солнце восходит 23 сентября, а заходит после 21 марта, и поэтому когда на северном полюсе Земли ночь, на южном - день, и наоборот. б) Для наблюдателя на северном полярном круге (j = + 66° 33') незаходящими являются светила с d ³ + 23° 27', а невосходящими - с d < - 23° 27'. Следовательно, на северном полярном круге Солнце не заходит в день летнего солнцестояния (в полночь центр Солнца только касается горизонта в точке севера N) и не восходит в день зимнего солнцестояния (в полдень центр солнечного диска только коснется горизонта в точке юга S, а затем снова опустится под горизонт). В остальные дни года Солнце на этой широте восходит и заходит. При этом максимальной высоты в полдень оно достигает в день летнего солнцестояния (hmax = + 46° 54’), а в день зимнего солнцестояния его полуденная высота минимальна (hmin = 0°). На южном полярном круге (j = - 66° 33') Солнце не заходит в день зимнего солнцестояния и не восходит в день летнего солнцестояния. Северный и южный полярные круги являются теоретическими границами тех географических широт, где возможны полярные дни и ночи (дни и ночи, длящиеся больше 24 часов). В местах, лежащих за полярными кругами, Солнце бывает незаходящим или невосходящим светилом тем дольше, чем ближе место к географическим полюсам. По мере приближения к полюсам продолжительность полярных дня и ночи увеличивается. в) Для наблюдателя на северном тропике (j = + 23° 27') Солнце всегда является восходящим и заходящим светилом. В день летнего солнцестояния оно в полдень достигает максимальной высоты hmax = + 90°, т.е. проходит через зенит. В остальные дни года Солнце в полдень кульминирует к югу от зенита. В день зимнего солнцестояния его минимальная полуденная высота hmin = + 43° 06'. На южном тропике (j = - 23° 27’) Солнце также всегда восходит и заходит. Но на максимальной полуденной высоте над горизонтом (+ 90°) оно бывает в день зимнего солнцестояния, а на минимальной (+ 43° 06') - в день летнего солнцестояния. В остальные дни года Солнце в полдень кульминирует здесь к северу от зенита. В местах, лежащих между тропиками и полярными кругами, Солнце восходит и заходит каждый день года. Полгода здесь продолжительность дня больше продолжительности ночи, а полгода - ночь продолжительнее дня. Полуденная высота Солнца здесь всегда меньше 90° (кроме тропиков) и больше 0° (кроме полярных кругов). В местах, лежащих между тропиками, Солнце бывает в зените два раза в году, в те дни, когда его склонение равно географической широте места. г) Для наблюдателя на экваторе Земли (j = 0) все светила, в том числе и Солнце, являются восходящими и заходящими. При этом 12 часов они находятся над горизонтом, a 12 часов - под горизонтом. Следовательно, на экваторе продолжительность дня всегда равна продолжительности ночи. Два раза в году Солнце в полдень проходит в зените (21 марта и 23 сентября). С 21 марта по 23 сентября Солнце на экваторе кульминирует в полдень к северу от зенита, а с 23 сентября по 21 марта - к югу от зенита. Минимальная полуденная высота Солнца здесь будет равна hmin = 90° - 23° 27' = 66° 33' (22 июня и 22 декабря). На основании предыдущего можно сформулировать следующие астрономические признаки тепловых поясов: 1. В холодных поясах (от j = ± 66° 33' до j = ± 90°) Солнце может быть незаходящим и невосходящим светилом. Полярный день и полярная ночь могут длиться от 24 часов до полугода. 2. В умеренных поясах (от j = ± 23° 27’ до j = ± 66° 33’) Солнце каждый день восходит и заходит, но никогда не бывает в зените. Полярных дней и ночей здесь никогда не бывает. Продолжительность дня и ночи короче 24 часов. Летом день длиннее ночи, а зимой - наоборот. 3. В жарком поясе (от j = + 23° 27' до j = - 23° 27') Солнце также всегда восходящее и заходящее светило и два раза и голу (на тропиках один раз) в полдень бывает в зените (и разных местах - в разные дни года, а на экваторе - в день весеннего и в день осеннего равноденствий). [См. также § 33.]

§ 18. Основы измерения времени

На наблюдениях суточного вращения небесного свода и годичного движения Солнца, т.е. на вращении Земли вокруг оси и на обращении Земли вокруг Солнца, основано измерение времени. Вращение Земли вокруг оси происходит почти равномерно, с периодом, равным периоду вращения небесного свода, который достаточно точно может быть определен из наблюдений. Поэтому по углу поворота Земли от некоторого начального положения можно судить о протекшем времени. За начальное положение Земли принимается момент прохождения плоскости земного меридиана места наблюдения через избранную точку на небе, или, что одно и то же, момент верхней (или нижней) кульминации этой точки на данном меридиане. Продолжительность основной единицы времени, называемой сутками, зависит от избранной точки на небе. В астрономии за такие точки принимаются: а) точка весеннего равноденствия; б) центр видимого диска Солнца (истинное Солнце); в) "среднее солнце" - фиктивная точка, положение которой на небе может быть вычислено теоретически для любого момента времени. Определяемые этими точками три различные единицы времени называются соответственно звездными, истинными солнечными и средними солнечными сутками, а время, ими измеряемое, - звездным, истинным солнечным и средним солнечным временем. Здесь совершенно необходимо отметить, что эти различные названия времен, так же как и все другие, с которыми мы познакомимся в дальнейшем, относятся к одному и тому же реальному и объективно существующему времени. Иными словами, никаких различных времен не существует, есть лишь различные единицы измерения времени и различные системы его счета. Сутки и их доли (часы, минуты и секунды) используются при измерении коротких промежутков времени. Для измерения больших промежутков времени служит другая единица меры, основанная на движении Земли вокруг Солнца, - тропический год. Тропическим годом называется промежуток времени между двумя последовательными прохождениями центра истинного Солнца через точку весеннего равноденствия.

§ 19. Звездные сутки. Звездное время

Промежуток времени между двумя последовательными одноименными кульминациями точки весеннего равноденствия на одном и том же географическом меридиане называется звездными сутками. За начало звездных суток на данном меридиане принимается момент верхней кульминации точки весеннего равноденствия. Время, протекшее от верхней кульминации точки весеннего равноденствия до любого другого ее положения, выраженное в долях звездных суток (в звездных часах, минутах и секундах), называется звездным временем s. Угол, на который Земля повернется от момента верхней кульминации точки весеннего равноденствия до какого-нибудь другого момента, равен часовому углу точки весеннего равноденствия в этот момент. Следовательно, звездное время s на данном меридиане в любой момент численно равно часовому углу точки весеннего равноденствия t^, выраженному в часовой мере, т.е.

s = t^. (1.14)

Точка весеннего равноденствия на небе ничем не отмечена. Непосредственно измерить ее часовой угол или заметить момент прохождения ее через меридиан нельзя. Поэтому практически для установления начала звездных суток или звездного времени в какой-либо момент надо измерить часовой угол t какого-либо светила М, прямое восхождение которого a известно (рис. 12).

Тогда, поскольку t = Qm, a = ^m, а часовой угол точки весеннего равноденствия t^ = Q ^ и, по определению, равен звездному времени s,

s = t^ = a + t, (1.15)

т.е. звездное время в любой момент равно прямому восхождению какого-либо светила плюс его часовой угол. В момент верхней кульминации светила его часовой угол t = 0, и тогда

s = a. (1.16)

В момент нижней кульминации светила его часовой угол t = 12h, и звездное время

s = a + 12h.(1.17)

Измерение времени звездными сутками и их долями наиболее просто и поэтому весьма выгодно при решении многих астрономических задач. Но в повседневной жизни пользоваться звездным временем крайне неудобно. Повседневный распорядок жизни человека связан с видимым положением Солнца над горизонтом, с его восходом, кульминацией и заходом, а не с положением фиктивной точки весеннего равноденствия. А так как взаимное расположение Солнца и точки весеннего равноденствия в течение года непрерывно меняется, то, например, верхняя кульминация Солнца (полдень) в разные дни года происходит в разные моменты звездных суток. Действительно, только раз в году, когда Солнце проходит через точку весеннего равноденствия, т.е. когда его прямое восхождение a = 0h, оно будет кульминировать вместе с точкой весеннего равноденствия в полдень, в 0h звездного времени. Через одни звездные сутки точка весеннего равноденствия снова будет находиться в верхней кульминации, а Солнце придет на меридиан приблизительно лишь через 4 минуты, так как за одни звездные сутки оно сместится к востоку относительно точки весеннего равноденствия почти на 1°, и его прямое восхождение будет уже равно a " 0h 4m. Еще через одни звездные сутки прямое восхождение Солнца снова увеличится на 4m, т.е. полдень наступит уже приблизительно в 0h 8m по звездному времени и т.д. Таким образом, звездное время кульминации Солнца непрерывно растет, и полдень наступает в различные моменты звездных суток. Неудобство совершенно очевидное.

§ 20. Истинные солнечные сутки. Истинное солнечное время

Промежуток времени между двумя последовательными одноименными кульминациями Солнца (точнее, центра солнечного диска) на одном и том же географическом меридиане называется истинными солнечными сутками. За начало истинных солнечных суток на данном меридиане принимается момент нижней кульминации Солнца (истинная полночь). Время, протекшее от нижней кульминации Солнца до любого другого его положения, выраженное в долях истинных солнечных суток (в истинных солнечных часах, минутах и секундах), называется истинным солнечным временем T¤. Истинное солнечное время T¤ на данном меридиане в любой момент численно равно часовому углу Солнца t¤, выраженному в часовой мере, плюс 12h, т.е.

T¤= t¤ + 12h(1.18)

Часовой угол Солнца, когда оно находится над горизонтом и не закрыто облаками, всегда можно измерить непосредственно. В момент верхней кульминации Солнца (в истинный полдень) t¤ = 0h, и следовательно, истинное солнечное время в полдень всегда равно 12 часам. Измерение времени истинными солнечными сутками просто, но пользоваться истинным солнечным временем в повседневной жизни так же неудобно, как и звездным. Неудобство возникает потому, что продолжительность истинных солнечных суток величина непостоянная. Величина запаздывания верхней (и нижней) кульминации Солнца относительно звездного времени (см. § 19) в разные дни года различна. Следовательно, различна и продолжительность истинных солнечных суток. Она была бы постоянной, если бы суточное приращение прямого восхождения Солнца было постоянным. Но этого нет (см. § 16) по двум причинам: 1) Солнце движется не по небесному экватору, а по эклиптике, наклоненной к небесному экватору на значительный угол e = 23° 27'. 2) Движение Солнца по эклиптике неравномерно. Вследствие первой причины продолжительности истинных солнечных суток была бы неодинаковой даже и в том случае, если бы Солнце перемещалось по эклиптике равномерно, т.е. если бы суточное приращение его долготы Dl было бы всегда одинаковым. Действительно, вблизи равноденственных точек равные дуги АВ = ВС = Dl эклиптики E E' (рис. 13, a), спроектированные на небесный экватор QQ', дают приращения Da прямого восхождения Солнца (ab, bc) меньше соответствующих отрезков эклиптики, т. е. Da < Dl . Вблизи точек солнцестояний, наоборот, приращения Da прямого восхождения Солнца (mk, kl на рис. 13,6) больше отрезков эклиптики MK = KL = Dl вследствие расхождения часовых кругов по мере их удаления от полюсов. Таким образом, здесь Da > Dl .

В результате действия обеих причин истинные солнечные сутки, например, 22 декабря, длиннее на 50-51 секунду, чем 23 сентября. Непостоянство продолжительности истинных солнечных суток не позволяет применять их для счета времени на практике.

§ 21. Средние солнечные сутки. Среднее солнечное время

Чтобы получить сутки постоянной продолжительности, и в то же время связанные с движением Солнца, в астрономии введены понятия двух фиктивных точек - среднего эклиптического и среднего экваториального солнца. Среднее эклиптическое солнце равномерно движется по эклиптике со средней скоростью Солнца и совпадает с ним около 3 января и 4 июля. Среднее экваториальное солнце равномерно движется по небесному экватору с постоянной скоростью среднего эклиптического солнца и одновременно с ним проходит точку весеннего равноденствия. Следовательно, в каждый момент времени прямое восхождение среднего экваториального солнца равно долготе среднего эклиптического солнца. Их же прямые восхождения одинаковы только четыре раза в году, а именно, в моменты прохождения ими точек равноденствий и в моменты прохождения средним эклиптическим солнцем точек солнцестояний. Введением среднего экваториального солнца, у которого суточные приращения Da прямого восхождения одинаковы, устраняется непостоянство продолжительности солнечных суток и неравномерность истинного солнечного времени. Промежуток времени между двумя последовательными одноименными кульминациями среднего экваториального солнца на одном и том же географическом меридиане называется средними солнечными сутками, или просто средними сутками. Из определения среднего экваториального солнца следует, что продолжительность средних солнечных суток равна среднему значению продолжительности истинных солнечных суток за год. За начало средних солнечных суток на данном меридиане принимается момент нижней кульминации среднего экваториального солнца (средняя полночь). Время, протекшее от нижней кульминации среднего экваториального солнца до любого другого его положения, выраженное в долях средних солнечных суток (в средних часах, минутах и секундах), называется средним солнечным временем или просто средним временем Tm . Среднее время Tm на данном меридиане в любой момент численно равно часовому углу tm среднего экваториального солнца, выраженному в часовой мере, плюс 12h, т.е.

Tm = tm +12h.(1.19)

Среднее экваториальное солнце на небе ничем не отмечено, поэтому измерить его часовой угол нельзя, и среднее солнечное время получают путем вычислений по определенному из наблюдений истинному солнечному или звездному времени. До 1925 г. при астрономических наблюдениях за начало средних суток принимался момент верхней кульминации среднего солнца. Поэтому различали среднее время "астрономическое" и "гражданское". Начиная с 1925 г. астрономы стали считать среднее время также от полуночи, и теперь надобность в терминах "астрономическое время" и "гражданское время" совершенно отпала.

§ 22. Уравнение времени

Разность между средним временем и истинным солнечным временем в один и тот же момент называется уравнением времени h. На основании (1.18), (1.19) и (1.15) уравнение времени

h = Tm - T¤ = tm - t¤ = a ¤ - a m. (1.20)

Из последнего соотношения следует:

Tm = T¤ + h , (1.21)

т.е. среднее солнечное время в любой момент равно истинному солнечному времени плюс уравнение времени. Таким образом, измерив непосредственно часовой угол Солнца t¤, определяют по (1.18) истинное солнечное время и, зная уравнение времени h в этот момент, находят по (1.21) среднее солнечное время: Tm = t¤ + 12h + h. Так как среднее экваториальное солнце проходит через меридиан то раньше, то позже истинного Солнца, разность их часовых углов (уравнение времени) может быть как положительной, так и отрицательной величиной. Уравнение времени и его изменение в течение года представлено на рис. 14 сплошной кривой. Эта кривая является суммой двух синусоид - с годичным и полугодичным периодами. Синусоида с годичным периодом (штриховая кривая) дает разность между истинным и средним временем, обусловленную неравномерным движением Солнца по эклиптике. Эта часть уравнения времени называется уравнением центра или уравнением от эксцентриситета. Синусоида с полугодичным периодом (штрих-пунктирная кривая) представляет разность времен, вызванную наклоном эклиптики к небесному экватору, и называется уравнением от наклона эклиптики. Уравнение времени обращается в нуль около 15 апреля, 14 июня, 1 сентября и 24 декабря и четыре раза в году принимает экстремальные значения; из них наиболее значительные около 11 февраля (h = +14m) и 2 ноября (h = -16m). Уравнение времени можно вычислить для любого момента. Оно обычно публикуется в астрономических календарях и ежегодниках для каждой средней полуночи на меридиане Гринвича. Но следует иметь в виду, что в некоторых из них уравнение времени дается в смысле "истинное время минус среднее" (h = T¤ - Тт) и поэтому имеет противоположный знак. Смысл уравнения времени всегда разъясняется в объяснении к календарям (ежегодникам).

§ 23. Связь среднего солнечного времени со звездным

Из многолетних наблюдений установлено, что в тропическом году содержится 365,2422 средних солнечных суток. Нетрудно показать, что звездных суток в тропическом году на единицу больше, т.е. 366,2422. Действительно, предположим, что в момент весеннего равноденствия некоторого года среднее экваториальное солнце и точка весеннего равноденствия находятся в верхней кульминации. Спустя одни звездные сутки точка весеннего равноденствия снова придет на небесный меридиан, а среднее экваториальное солнце не дойдет до него, так как за звездные сутки оно сместится по небесному экватору к востоку на дугу примерно в 1°. Оно пройдет небесный меридиан после поворота небесной сферы на этот угол, на что потребуется около 4m времени, а точнее Зm56s. Следовательно, средние сутки продолжительнее звездных суток на Зm56s. Отходя каждые звездные сутки к востоку на дугу в 3m56s (или ~1°), среднее экваториальное солнце на протяжении тропического года обойдет весь небесный экватор (подобно одному видимому обороту Солнца по эклиптике) и в момент следующего весеннего равноденствия снова придет в точку весеннего равноденствия. Но в этот момент часовой угол среднего солнца и точки весеннего равноденствия будут отличаться от нуля, так как тропический год не содержит целого числа ни звездных, ни средних суток. Нетрудно видеть, что, какова бы ни была продолжительность тропического года, число суточных оборотов Солнца за этот промежуток времени будет на единицу меньше, чем число суточных оборотов точки весеннего равноденствия. Иными словами, 365,2422 средн. солн. суток = 366,2422 звездн. суток, откуда и Коэффициент

(1.22)

служит для перевода промежутков среднего солнечного времени в промежутки звездного времени, а коэффициент

(1.23)

- для перевода промежутков звездного времени в промежутки среднего солнечного времени. Таким образом, если промежуток времени в средних солнечных единицах есть DTm, а в звездных единицах Ds, то