147636.fb2 Приключение великих уравнений - читать онлайн бесплатно полную версию книги . Страница 25

Приключение великих уравнений - читать онлайн бесплатно полную версию книги . Страница 25

12 ноября: "Установил интересное действие индукции".

13 ноября: "Посчастливилось установить индукционное действие друг на друга двух незамкнутых цепей с током. Длина цепей 3 м, расстояние между ними 1,5 м".

5 декабря - в письме Гельмгольцу: "Мне удалось совершенно определенно установить индукционное действие одной незамкнутой прямолинейной цепи на другую незамкнутую прямолинейную цепь".

Сам Герц объясняет такой большой успех счастьем, везением - это верно лишь отчасти. Впоследствии выяснилось, что эксперименты, о которых идет сейчас речь и которые привели к открытию электромагнитных волн, сходные с экспериментами Герца, проводились чуть ли не за десять лет до него. Однако ни один исследователь не обладал уникальным экспериментальным талантом Герца, его глубокими знаниями в области математики и электродинамики. Он один оказался достаточно настойчивым, чтобы в конце концов доказать, что наблюдаемые им явления (к его сожалению) - следствие существования предсказанных Максвеллом электромагнитных волн.

Установка, созданная Герцем, настолько проста, что порой закрадывается сомнение: а можно ли с помощью этих кусков проволоки и шариков открыть волны, давшие потом жизнь таким сложным вещам, как радио и телевидение?

Установка работала так: сначала между двумя шариками создавалась искра. Искра была, по сути дела, кратковременным электрическим током, да еще прерывающимся сотни миллионов раз в секунду.

Недалеко от искры Герц разместил почти замкнутый контур из проволоки. Единственным промежутком в этой цепи был искровой промежуток между небольшими шариками.

Герцу удалось заметить, что даже при полутораметровом расстоянии между искрой и контуром во втором искровом промежутке проскакивали маленькие искорки. Это происходило всякий раз, когда искра возникала в первой цепи. (Как легко пишется! Как трудно делалось! Эти "искорки" были так слабы - нужно было напрягать глаза, наблюдая их в темной комнате, а продолжительность каждой всего миллионные доли секунды. А сколько нужно было пробовать, настраивать! Да и неизвестно было, получится ли что-нибудь? Мы увидим впоследствии, какой дорогой ценой заплатил Герц за свою самоотверженную работу). Получалось, что искра во второй цепи возникала без всякого электрического контакта с первой цепью.

Приборы Герца, изготовленные им самим.

Факт оставался фактом - с помощью какого-то механизма электрический импульс был без проводов передан из одной цепи в другую, да еще на расстояние полтора метра. Осталось разобраться, что же это был за механизм.

Герц, так же как и Гельмгольц, считал, что причина явления "электрическая индукция"; по Максвеллу, такое воздействие могло передаться лишь с помощью электромагнитной волны, схожей по своей природе со светом. Историческая заслуга Герца - в доказательстве, вопреки своему желанию, второй точки зрения.

В планах Герца было доказать совсем обратное. Через несколько лет он напишет в письме Гельмгольцу:

"Мои работы возникли не столько непосредственно из изучения максвелловых трудов, как я слышу со всех сторон, сколько в гораздо большей мере из изучения работ Вашего превосходительства".

Однако эксперимент упрямо наводил Герца на мысль о правильности точки зрения Максвелла. Собственно, вся теория подтверждалась или рушилась в зависимости от того, как будут вести себя вновь открытые волны Герца. Если они будут вести себя как свет, то Максвелл прав, если нет... И Герц осуществляет строгую проверку. Почти сразу же ему удалось обнаружить "тень". Металлический лист не пропускал новых волн, зато двери комнаты были для него прозрачны, как для света - стекло. Новые лучи распространяются прямолинейно: "Тщетно искал явление огибания".

С некоторым ужасом наблюдал Герц, как его прибор реагирует на колебания, рождавшиеся за дверью. "Не без удивления, - писал Герц, - я наблюдал искры в закрытой комнате".

Если бы прав был Гельмгольц, ничего подобного не должно было быть. Таким образом, волны Герца в этом отношении вполне были подобны световым.

А чему равна скорость новых волн? По Максвеллу, она должна быть равна скорости света. Герц провел большое число остроумных измерений, и в большинстве случаев получил для новых волн значение, очень близкое к скорости света.

Новый вопрос: будут ли новые волны преломляться как световые, например, в призме? Герц изготовляет гигантскую призму, весом чуть не в две тонны (!) из... асфальта. И новые лучи послушно отклонились в призме от своего прямолинейного направления. Отклонились почти точно на столько, на сколько должно было бы произойти по теории Максвелла.

Точно так же собрал Герц данные об отражении новых волн; выяснилось, что они прекрасно отражались, например, цинковыми экранами. Герцу удалось даже сделать параболические зеркала для новых воли.

Точно таким же образом для новых лучей оказались справедливыми и существующими все явления, присущие свету, например, даже такое тонкое, как поляризация.

После этого не осталось практически никаких сомнений в том, что открытые "волны Герца" - не что иное, как предсказанные Максвеллом электромагнитные волны, причем совпадение было не только качественным, но и количественным - по теории Максвелла можно было заранее рассчитывать практически все характеристики новых волн.

Трудно сейчас представить себе бурю, вызванную открытиями Герца. Для физиков они прежде всего означали полный триумф "уравнений Максвелла" и крах всех других электродинамических теорий. Все неисчислимое бумажное многопудье курсов электродинамики Неймана, Вебера, Гельмгольца и множества других авторов нашло себе вечную гавань в пыльных архивах науки, уступив место нескольким строкам максвеллювых уравнений.

Открытия Герца привлекли к себе внимание самых широких слоев общества ведь суть вновь открытых "волн Герца", "лучей Герца" была довольно легко доступна для понимания. Многие сразу же предложили создать новую систему связи - без столбов, проводов и кабелей. Один из таких энтузиастов написал Герцу. Ответ был пессимистическим:

"Электрические колебания в трансформаторах и телефонах слишком медленные (...). Если бы вы были в состоянии построить вогнутые зеркала размером с материк, то вы могли бы поставить намечаемые опыты, но практически сделать ничего нельзя: с обычными зеркалами вы не обнаружите ни малейшего действия. По крайней мере, я так думаю".

Более того, от пассивного неприятия идеи о полезности своих волн он скоро перешел к активному - например, он написал в дрезденскую палату коммерции письмо о том, что исследования радиоволн нужно запретить как бесполезные.

Годы напряжения, хотя и творческого, колоссальные перегрузки, особенно во время открытия электромагнитных волн, не прошли для Герца безнаказанно.

Сначала отказали глаза - явное следствие долгого всматривания в искровой промежуток в темной комнате в поисках неуловимых, почти нематериальных искр. Его жене пришлось взять на себя дополнительный труд - читать и писать для Генриха.

Затем заболели зубы. Затем уши и нос. Затем - общее заражение крови, от которого на пороге нового 1893 года умер знаменитый Герц, умер в возрасте всего лишь 37 лет. Предчувствуя мрачную развязку, он за несколько недель до смерти писал матери:

"Если со мной действительно что-то случится, вы не должны огорчаться, но должны мною гордиться и думать, что я принадлежу к тем особо избранным людям, которые жили хотя и не долго, но вместе с тем жили достаточно. Эту судьбу я не желал и не выбирал, но я доволен ею, и если бы мне предоставили выбор, я может быть, сам избрал бы ее".

Так ушел из жизни этот великий человек, награжденный при жизни великими почестями (едва ли существуют в науке такие почести, награды, премии и медали, которые не были ему вручены).

А после смерти, когда он не мог узнать уже о блестящей судьбе своего изобретения, благодарные потомки воздвигли ему еще один памятник: именем Герца названа единица частоты колебаний - одно колебание в секунду.

Кажется символичным, что мы каждый раз неявно чествуем великого Герца, когда слушаем по радио (Герц!), или телевизору (Герц!) сообщения об очередных космических успехах: "С космическим кораблем установлена надежная двусторонняя радиосвязь. Сообщения с борта корабля передаются на частоте 20,008 мегагерц".

Мегагерц - это миллион герц.

А герц - это Генрих Герц.

Герц завершил труд, начатый Фарадеем. Если Максвелл перевел представления Фарадея ,в образы высокой математики, то Герц превратил эти образы в осязаемые, видимые, слышимые колебания - в реально существующие электромагнитные волны, описываемые все теми же уравнениями Максвелла.

Впрочем, здесь нужно сделать одно серьезное уточнение. Мы уже записали немного ранее уравнения Максвелла и даже сделали попытку их объяснить. Но это было сделано в известном смысле незаконно. Уравнения, которые мы видели, записаны не Максвеллом, а Герцем. И Оливером Хевисайдом. Но не Максвеллом.

Дело в том, что "Трактат по электричеству и магнетизму" Максвелла - очень сложная книга. В ней более тысячи страниц, из которых лишь десяток (!) непосредственно относится к его системе уравнений. Однако сами уравнения разбросаны по всей книге и их довольно много - двенадцать!

Изучение Герцем и Хевисайдом уравнений Максвелла показало, что некоторые из максвелловых уравнений могут быть выведены друг из друга, некоторые вообще лишни и не отражают фундаментальных законов природы.

Кроме того, изложение и обозначения Максвелла оставляют большой простор для пожеланий их улучшения. Как пишут исследователи, "сумбурность изложения ...приходится признать типичной чертой его литературного творчества". И еще: "Трактат Максвелла загроможден следами его блестящих линий нападения, его укрепленных лагерей, его битв".

Во всех уравнениях Максвелла необходимо было разобраться, выделить из них лишь основные и привести их к единственному, "исходному" виду. Мы уже писали о том, как Герц, сидя в провинциальном Киле, получил как частный случай своей электродинамической теории уравнения Максвелла. Затем через несколько лет он продолжил работу.

Так вот, именно усилиями Герца уравнения Максвелла получили настоящий, "исходный" вид. Правда, они все равно не были похожи на уравнения, которые мы рассматривали. Герц, как "истинный немец" (эту черту его мы тоже отмечали) обозначает все величины буквами старонемецкого готического алфавита. Он получает всего четыре уравнения, очень близкие по существу, по содержанию и форме к тем уравнениям, которыми мы пользуемся до сих пор.

Одновременно с Герцем ту же работу по "расчистке" "Трактата" Максвелла проводил английский ученый Оливер Хевисайд.

Трудно указать точно его научную профессию: некий шутник заметил, что "Хевисайд одно время бывал математиком, другое время - физиком, но во все времена - телеграфистом". Действительно, Хевисайд, казалось, все время думал об усовершенствовании телеграфа - именно его работы позволили неограниченно увеличивать дальность телеграфной и телефонной связи и принесли владельцам компаний миллиардные дивиденды. Сам же Хевисайд умер в нищете.

Редакторы часто "заворачивали" статьи Хевисайда, ссылаясь на то, что они "трудно читаются".

" - Трудно читаются? Но пишутся еще труднее, господа!".

Именно "телеграфные интересы" привели Хевисайда к теории Максвелла. Переработав в своей гениальной голове (он был гений, это было ясно его современникам. К сожалению, особых выводов отсюда сделано ими не было. Он был гений. Это доказывается хотя бы тем, что знаменитая формула была выведена им за 15(!) лет до Эйнштейна, которому эта величайшая заслуга приписывается в известной степени несправедливо) весь Максвеллов "Трактат", он тоже, как и Герц, пришел к более ограниченной системе четырех уравнений. Единственную добавку, которую он сделал к системе, составляли два простых, поясняющих уравнения, связующих две электрические и две магнитные величины порознь.

Таким образом, Герц и Хевисайд превратили неорганизованные формулы Максвелла в стройную систему, изучаемую, используемую и непоколебимую до сих пор. Надо сказать, что и Герц и Хевисайд несколько преувеличивали свой вклад по отношению к уравнениям Максвелла, утверждая, что вся система уравнений (Герц) или отдельные уравнения (Хевисайд) принадлежат уже им, а не Максвеллу. Это, конечно, неправильно.

"Я мог бы сказать, - говорил знаменитый немецкий физик Больцман, - что последователи Максвелла ничего не изменили в этих уравнениях, кроме букв. Но это было бы слишком. Однако удивляться надо не тому, что к этим уравнениям вообще что-то могло быть добавлено, но гораздо более тому, как мало к ним добавлено".

Мы ничего не сказали о личности Хевисайда, а это - один из своеобразнейших людей в истории науки.

Он был чудаком, типичным героем Диккенса. Никогда не участвовал в научных заседаниях; когда его избрали в общество инженеров - телеграфистов (большая честь), он не стал платить взносы; его выбрали членом Лондонского Королевского общества (даже у Фарадея, как вы помните, эта операция проходила негладко), он не поехал на заседание. Он не платил денег за газ, семидесятилетним стариком сидел он без отопления и освещения. И не по скупости - ведь он не раз отказывался от больших денег. Он был отшельником. Он был убежденным холостяком.